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Abstract
We apply the Schrödinger factorization to construct the ladder operators for the
hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic
oscillator in arbitrary dimensions. By generalizing these operators we show
that the dynamical algebra for these problems is the su(1, 1) Lie algebra.

PACS numbers: 02.20.Sv, 11.30.Pb, 03.65.Fd, 03.65.Ge, 02.30.Tb

1. Introduction

The factorization methods have played an important role in the study of quantum systems
[1–6]. This is because if the Schrödinger equation is factorizable, the energy spectrum and
the eigenfunctions are obtained algebraically. Infeld and Hull [5, 6] used the ideas of Dirac
[1] and Schrödinger [2–4] and created the Infeld–Hull factorization method (IHFM) which
uses a particular solution for the Ricatti equation. This method allowed us to classify the
problems according to the characteristics involved in the potentials and it is closely related to
the supersymmetric quantum mechanics [7–12].

The Schrödinger factorization developed in [2] is a technique which is essentially different
to that of the IHFM, as it was pointed out by Infeld [5]: ‘Schrödinger uses a finite number of
infinite ladders, whereas I use an infinite number of finite ladders’. In order to clarify these
differences we consider a typical central-potential problem like the two-dimensional hydrogen
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atom or the two-dimensional isotropic harmonic oscillator. Their dynamical algebras for the
bound states are compact. Therefore, the corresponding ladder operators can only generate
a finite number of states with different values of the angular momentum for each degenerate
energy eigenvalue [13]. On the other hand, their dynamical algebras are non-compact and
have infinite-dimensional representations [13]. Thus, they generate an infinite number of
states with different values of the energy for each degenerate angular momentum eigenvalue.
Historically, the Schrödinger factorization has been less applied to physical problems than the
IHFM.

A systematic method to find both compact and non-compact algebra generators for a given
system has not still developed. These generators have been intuitively found and forced them to
close an algebra, as it is extensively shown in [14, 15]. For the most important central-potential
problems, the hydrogen atom and the isotropic harmonic oscillator, algebraic treatments by
means of compact and non-compact groups are known [16, 17]. Recently, the generators of
these groups for some two-dimensional central-potential problems were obtained by means of
factorization methods [18] and it has been shown that the Schrödinger factorization operators
are related to the dynamical algebra generators for these systems [18].

In the last two decades, the N-dimensional systems have been treated by many authors [10].
The study of these systems is important because mathematically some few-body problems in
three dimensions are equivalent to higher dimensional ones [11]. It is well known that the
N-dimensional problems of the hydrogen atom and harmonic oscillator are exactly solvable
and accept to be studied by supersymmetric quantum mechanics [19–21]. Recently, it has been
shown that the N-dimensional Mie-type potential [22, 23] and the pseudo-harmonic oscillator
[24] are exactly solvable potentials. In these works, by using the recursion relations for the
generalized Laguerre polynomials and the explicit form of the eigenfunctions, the su(1, 1)

dynamical algebra generators for these systems are found.
The aim of this work is to obtain the generators of the su(1, 1) dynamical algebra from

the Schrödinger factorization for the hydrogen atom, Mie-type potential, harmonic oscillator
and pseudo-harmonic oscillator in arbitrary dimensions. This paper is organized as follows.
Section 2 is concerned with the harmonic oscillator and the hydrogen atom. Section 3 is
dedicated to the study of the Mie-potential and the pseudo-harmonic oscillator. In section 4
we give the concluding remarks.

2. Harmonic oscillator and hydrogen atom

2.1. Radial Schrödinger equation in N-dimensions

The N-dimensional Schrödinger equation for bound states(
− h̄2

2m
�N + V (r)

)
�(r,�N) = E�(r,�N) (1)

can be reduced to the radial equation [10, 11](
d2

dr2
+

N − 1

r

d

dr
− �(� + N − 2)

r2
− 2m

h̄2 V (r) +
2m

h̄2 En

)
Rn�(r) = 0, (2)

where �N = ∂2

∂x2
1

+ · · · + ∂2

∂x2
N

, �(r,�N) = �n�m(r,�N) = Rn�(r)Y
m
� (�N) and Ym

� (�N) are

the hyperspherical harmonics. If we propose Rn�(r) to have the form

Rn�(r) = r
1−N

2 Un�(r), (3)
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then equation (2) can be rewritten as(
r2 d2

dr2
− 2m

h̄2 (V (r) − En) r2 − (N − 1)(N − 3)

4
− �(� + N − 2)

)
Un� = 0. (4)

This expression is important to obtain the main results of this paper.

2.2. Harmonic oscillator

By substituting the harmonic oscillator potential V (r) = mω2r2

2 into equation (4), we have{
r2 d2

dr2
− 2m

h̄2

(
mω2r2

2
− En

)
r2 − (N − 1)(N − 3)

4
− �(� + N − 2)

}
Un� = 0. (5)

If we set r = α−1x, α = √
mω/h̄ and λn = En

h̄ω
, this equation can be written as follows:(

x2 d2

dx2
− x4 + 2λnx

2

)
Un� =

(
�(� + N − 2) +

(N − 1)(N − 3)

4

)
Un�. (6)

Since the right-hand side of this equation can be factorized as

�(� + N − 2) +
(N − 1)(N − 3)

4
=

(
� +

N − 2

2

)2

− 1

4
≡ κ2 − 1

4
, (7)

equation (6) is rewritten as

LnUn� ≡
(

−x2 d2

dx2
+ x4 − 2λnx

2

)
Un� = −

(
κ2 − 1

4

)
Un�. (8)

In order to factorize the operator Ln, we apply the Schrödinger factorization [2, 18]. Thus,
we propose a pair of first-order differential operators such that(

x
d

dx
+ ax2 + b

) (
−x

d

dx
+ cx2 + f

)
Un� = gUn�, (9)

where a, b, c, f , y, g are constants to be determined. Expanding this expression and comparing
it with equation (8), we obtain

a = c = ∓1, f = b + 1 = −1

2
± λn, g = f (f − 1) −

(
κ2 − 1

4

)
. (10)

Using these results, equation (8) is equivalent to

(Dn
− − 1)Dn

+Un� = 1

4

[(
λn +

1

2

) (
λn +

3

2

)
−

(
κ2 − 1

4

)]
Un�, (11)

(Dn
+ + 1)Dn

−Un� = 1

4

[(
λn − 1

2

) (
λn − 3

2

)
−

(
κ2 − 1

4

)]
Un�, (12)

where we have defined the operators

Dn
± = 1

2

(
∓x

d

dx
+ x2 − λn ∓ 1

2

)
. (13)

To find the dynamical algebra, we define the operator

D3 = 1

4

(
− d2

dx2
+ x2 +

κ2 − 1
4

x2

)
, (14)

which from equation (8) satisfy

D3Un� = λn

2
Un�. (15)

3
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In order to generalize the operators Dn
± to En-independent ones, we use equation (14) and

obtain

D± = 1

2

(
∓x

d

dx
+ x2 − 2D3 ∓ 1

2

)
. (16)

The properties of the operators D3 and D± are obtained by considering their explicit form
and the inner product for the radial eigenfunctions of the Schrödinger equation (2) on the
Hilbert space defined by

(Rn′� , Rn�) ≡
∫ ∞

0
R∗

n′�(r)Rn�(r)r
N−1dr. (17)

From equations (3) and (17), we find that the inner product for the functions Un� is

(Un′� , Un�) ≡
∫ ∞

0
U ∗

n′�(x)Un�(x)dx. (18)

Since equation (15) is essentially the Schrödinger equation, we can immediately prove
that D3 is Hermitian. Moreover, using equations (16) and (18) we can show

(Un′� ,D±Un�) = (D∓Un′� , Un�), (19)

which implies D± = D
†
∓. This means that the operators D± are mutually adjoint.

By direct calculation we show that the operators D± and D3 satisfy the su(1, 1) Lie
algebra

[D±,D3] = ∓D±, (20)

[D+,D−] = −2D3, (21)

with the Casimir operator

D2 ≡ −D±D∓ + D2
3 ∓ D3. (22)

Explicitly from equations (14) and (16), the eigenvalue equation for this operator is

D2Un� =
(

κ2 − 1

4

)
Un�. (23)

According to the theory of representations [25] and equations (15) and (23), we find that the
action of the raising and lowering operators on the eigenstates Un� is

D+Un� = 1

2

√
(λn − κ + 1)(λn + κ + 1) Un+1 �, (24)

D−Un� = 1

2

√
(λn − κ − 1)(λn + κ − 1) Un−1 �. (25)

This means that the generators of the su(1, 1) algebra are represented by infinite-dimensional
subspaces of the radial quantum states. Moreover, the action of the Schrödinger operators on
the eigenstates Un� is to change only the radial quantum number n in one unit. Nevertheless,
this action implies a change in two units for the principal quantum number ν ≡ 2n + �.

2.3. Hydrogen atom

Substituting the Coulomb potential V (r) = − e2

r
into equation (4), we have{

r2 d2

dr2
+

2m

h̄2

(
e2

r
+ En

)
r2 − (N − 1)(N − 3)

4
− �(� + N − 2)

}
Ũn� = 0. (26)
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We set ξ = me2

h̄2 , K2
n = − me4

2h̄2En
and r = Knx to rewrite equation (26) as

L̃nŨn� ≡
(

−x2 d2

dx2
− 2ξKnx + ξ 2x2

)
Ũn� = −

(
κ2 − 1

4

)
Ũn�. (27)

An analogous procedure to that followed for the case of the N-dimensional harmonic oscillator
allows us to find the Schrödinger operators for the N-dimensional hydrogen atom

T n
± = ∓x

d

dx
+ ξx − Kn, (28)

which satisfy

(T n
− − 1)T n

+ Ũn� =
[
Kn(Kn + 1) −

(
κ2 − 1

4

)]
Ũn�, (29)

(T n
+ + 1)T n

−Ũn� =
[
Kn(Kn − 1) −

(
κ2 − 1

4

)]
Ũn�. (30)

Equation (27) allows us to define the operator

T3 = 1

2ξ

(
−x

d2

dx2
+ ξ 2x +

κ2 − 1
4

x

)
, (31)

which satisfies

T3Ũn� = KnŨn�. (32)

Thus, from equations (28) and (31) we obtain the operators

T± = ∓x
d

dx
+ ξx − T3. (33)

Note that these operators depend implicitly (via r = Knx) on the value of n and act on the
eigenstates which are characterized by this value of n.

If we apply the inner product satisfied by the eigenfunctions of the harmonic oscillator,
equation (18), we find that the operator T3 is not Hermitian with respect to this scalar product
[25, 26]. Nevertheless, if we define the new inner product on the Hilbert space spanned by the
radial eigenfunctions of the N-dimensional hydrogen atom as

(R̃n′� , R̃n�) ≡
∫ ∞

0
R̃∗

n′�(r)R̃n�(r)r
N−2dr (34)

or equivalently

(Ũn′� , Ũn�) ≡
∫ ∞

0
Ũ ∗

n′�(x)Ũn�(x)x−1dx, (35)

we show that the operator T3 is Hermitian with respect to this scalar product. Moreover, using
(33) and (35) we show

(Ũn′� , T±Ũn�) = (T∓Ũn′� , Ũn�), (36)

which implies that T± = T
†
∓.

On the other hand, by direct calculation it immediately shows that the commutation
relations satisfied by the operators T± and T3 are

[T±, T3] = ∓T±, (37)

[T+, T−] = −2T3, (38)

5
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which is the su(1, 1) Lie algebra. By using equations (31) and (33), we find that the eigenvalue
equation for the corresponding Casimir operator is

T 2Ũn� ≡ (−T±T∓ + T 2
3 ∓ T3

)
Ũn� =

(
κ2 − 1

4

)
Ũn�. (39)

Hence, from the theory of representations [25] and equations (32) and (39), for the ladder
operators we have

T+Ũn� =
√(

Kn − κ +
1

2

) (
Kn + κ +

1

2

)
Ũn+1 �, (40)

T−Ũn� =
√(

Kn − κ − 1

2

) (
Kn + κ − 1

2

)
Ũn−1 �. (41)

In this way, we have showed that from the Schrödinger factorization it is possible to find
operators which relate eigenstates belonging to different energy and same angular momentum.
Moreover, this factorization allowed us to construct the generators of the su(1, 1) Lie algebra
for each Hamiltonian and to obtain the corresponding recurrence relations (24) and (25) or (40)
and (41). In addition to this, the generators D± and T± are represented by infinite-dimensional
Hilbert subspaces of the radial quantum states.

The operators given in (31) and (33), written in terms of the variable r and acting on the
radial functions R̃n�(r), are expressed as

τ3 ≡ Kn

2ξ

[
−r

d2

dr2
− (N − 1)

d

dr
+

(
ξ

Kn

)2

r +
κ2 − (

N−2
2

)2

r

]
, (42)

τ± ≡ ∓r
d

dr
+

ξ

Kn

r ∓ N − 1

2
− τ3. (43)

By direct calculation we show that this set of operators satisfy the su(1, 1) Lie algebra, as it
was expected.

Similarly, for the harmonic oscillator we show that the operators D3 and D±, equations
(14) and (16), rewritten in terms of the variable r and acting on the functions Rn�(r) satisfy
the su(1, 1) algebra.

3. Pseudo-harmonic oscillator and Mie-type potential

3.1. Pseudo-harmonic potential

The pseudo-harmonic oscillator potential is given by

V (r) = Ar2 +
B

r2
+ C. (44)

With this potential and the definitions

x = rα, �n = εn

h̄ω
, εn = En − C, (45)

equation (4) can be written as(
−x2 d2

dx2
+ x4 − 2�nx

2

)
Un� =

(
(N − 1)(N − 3)

4
+ �(� + N − 2) +

2mB

h̄2

)
Un�

= −
(

β2 − 1

4

)
Un�, (46)

6
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where

β =
√

(2� + N − 2)2 +
8mB

h̄2 . (47)

Since equation (46) is formally equal to that for the harmonic oscillator, it is immediate to find
and generalize the corresponding Schrödinger factorization operators. Therefore, by making
κ → β in equations (14), (16) and (23), we obtain the set of operators

D3 = 1

4

(
− d2

dx2
+ x2 +

β2 − 1
4

x2

)
, (48)

D± = 1

2

(
∓x

d

dx
+ x2 − 2D3 ∓ 1

2

)
, (49)

which close the su(1, 1) dynamical algebra for the pseudo-harmonic oscillator

[D±,D3] = ∓D±, (50)

[D+,D−] = −2D3. (51)

The corresponding Casimir operator satisfies

D2Un� =
(

β2 − 1

4

)
Un�. (52)

If we make λn → �n in equations (15), (24) and (25), then the action of the generators
D± and D3 on the eigenstates of the pseudo-harmonic oscillator is

D±Un� = 1

2

√
(�n − β ± 1)(�n + β ± 1) Un±1 �, (53)

D3Un� = �n

2
Un�. (54)

A similar procedure to that followed in section 2.1 allows us to show that D3 = D†
3 and

D± = D†
∓.

3.2. Mie-type potential

This section is advocated to obtain the dynamical algebra for the Mie-type potential given by

V (r) = A′

r
+

B ′

r2
+ C ′. (55)

This potential and the definitions

r = �nx, �2
n = −m(A′)2

2h̄2ε̃n

, ζ = −mA′

h̄2 , ε̃n = En − C ′ (56)

allow us to rewrite equation (4) as(
−x2 d2

dx2
− 2ζ�nx + ζ 2x2

)
Ũn� =

(
(N − 1)(N − 3)

4
+ �(� + N − 2) +

2mB ′

h̄2

)
Ũn�,

= −
(

γ 2 − 1

4

)
Ũn�, (57)

where

γ =
√

(2� + N − 2)2 +
8mB ′

h̄2 . (58)

7



J. Phys. A: Math. Theor. 43 (2010) 135201 D Martı́nez et al

Since this equation is formally equal to that for the hydrogen atom, the generators for the
N-dimensional Mie-type potential are

T3 = 1

2ζ

(
−x

d2

dx2
+ ζ 2x +

γ 2 − 1
4

x

)
, (59)

T± = ∓x
d

dx
+ ζx − T3. (60)

We can show that these operators satisfy the su(1, 1) Lie algebra

[T±, T3] = ∓T±, (61)

[T+, T−] = −2T3 (62)

and similarly to section 2.2, these operators have the properties T3 = T †
3 and T± = T †

∓.
In addition to this, the eigenvalue equation for the Casimir operator and the action of the

generators T± and T3 on the eigenstates Ũn� are

T 2Ũn� =
(

γ 2 − 1

4

)
Ũn� (63)

and

T±Ũn� =
√

(�n − γ ± 1

2
)(�n + γ ± 1

2
) Ũn+1 �, (64)

T3Ũn� = �nŨn�, (65)

respectively.
By transforming the pseudo-harmonic and Mie-type potential to the harmonic oscillator

and the hydrogen atom, respectively, we were able to find the corresponding generators which
close the su(1, 1) dynamical symmetry in a simple way. From the commutation relation (50),
we obtain the recurrence relations for the pseudo-harmonic oscillator D±Un� ∝ Un±1 � and
meanwhile from (61) we obtain the Mie-type potential recurrence relations T±Ũn� ∝ Ũn±1 �.
It must be pointed out that we achieved these results without the use of the explicit form of
the eigenfunctions.

4. Concluding remarks

We studied the N-dimensional harmonic oscillator and the hydrogen atom in an integrated
approach by applying the Schrödinger factorization. In this way a pair of first-order differential
operators were obtained whose action on the eigenstates of the corresponding Hamiltonian is
to change only the radial quantum number n leaving fixed the quantum angular momentum
number �. From the corresponding Hamiltonian we introduced, in a natural way, a third
differential operator which closes the su(1, 1) algebra for these problems. In order to find
the dynamical algebra of the N-dimensional Mie-type potential and the pseudo-harmonic
oscillator, we reduced the corresponding radial Schrödinger equations to those of the hydrogen
atom and the harmonic oscillator, respectively. In all the problems studied in this work, we
found that the generators of the su(1, 1) algebra are represented by infinite-dimensional Hilbert
subspaces of the radial quantum states. We emphasize that in any calculation we did not use
the explicit form of the eigenfunctions.

It must be noticed that the method we applied to construct the generators of the algebra
su(1, 1) differs from those followed by other authors [21, 23, 24, 27]. For instance, in [21]

8
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to obtain the dynamical algebra generators for the harmonic oscillator the SUSY operators
were used, and meanwhile in this paper we constructed them by applying the Schrödinger
factorization. On the other hand, the authors of [23, 24] used the recursion relations for the
generalized Laguerre polynomials and the explicit expressions of the radial eigenfunctions to
find the differential form of only two operators. Even though they close the su(1, 1) dynamical
algebra, the third ‘operator’ they used is not an operator but the eigenvalue of the operator
itself.

The Schrödinger factorization can be applied successfully to study more complex systems
such as matrix potentials with axial symmetry and generalized MICZ–Kepler problem which
is currently in progress.
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